Package: mvnmle 0.1-11.2

mvnmle: ML Estimation for Multivariate Normal Data with Missing Values

Finds the Maximum Likelihood (ML) Estimate of the mean vector and variance-covariance matrix for multivariate normal data with missing values.

Authors:Kevin Gross [aut], Douglas Bates [aut], Mao Kobayashi [cre]

mvnmle_0.1-11.2.tar.gz
mvnmle_0.1-11.2.zip(r-4.5)mvnmle_0.1-11.2.zip(r-4.4)mvnmle_0.1-11.2.zip(r-4.3)
mvnmle_0.1-11.2.tgz(r-4.4-x86_64)mvnmle_0.1-11.2.tgz(r-4.4-arm64)mvnmle_0.1-11.2.tgz(r-4.3-x86_64)mvnmle_0.1-11.2.tgz(r-4.3-arm64)
mvnmle_0.1-11.2.tar.gz(r-4.5-noble)mvnmle_0.1-11.2.tar.gz(r-4.4-noble)
mvnmle_0.1-11.2.tgz(r-4.4-emscripten)mvnmle_0.1-11.2.tgz(r-4.3-emscripten)
mvnmle.pdf |mvnmle.html
mvnmle/json (API)
NEWS

# Install 'mvnmle' in R:
install.packages('mvnmle', repos = c('https://indenkun.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/indenkun/mvnmle/issues

Datasets:
  • apple - Worm Infestations in Apple Crops
  • missvals - A multivariate data set with missing values.

On CRAN:

3.76 score 1 stars 1 packages 38 scripts 629 downloads 5 exports 0 dependencies

Last updated 2 years agofrom:5a02ce59ce. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-win-x86_64OKNov 08 2024
R-4.5-linux-x86_64OKNov 08 2024
R-4.4-win-x86_64OKNov 08 2024
R-4.4-mac-x86_64OKNov 08 2024
R-4.4-mac-aarch64OKNov 08 2024
R-4.3-win-x86_64OKNov 08 2024
R-4.3-mac-x86_64OKNov 08 2024
R-4.3-mac-aarch64OKNov 08 2024

Exports:getclfgetstartvalsmake.delmlestmysort

Dependencies: